Bialgebra Cohomology, Pointed Hopf Algebras, and Deformations
نویسندگان
چکیده
We give explicit formulas for maps in a long exact sequence connecting bialgebra cohomology to Hochschild cohomology. We give a sufficient condition for the connecting homomorphism to be surjective. We apply these results to compute all bialgebra two-cocycles of certain Radford biproducts (bosonizations). These two-cocycles are precisely those associated to the finite dimensional pointed Hopf algebras in the recent classification of Andruskiewitsch and Schneider, in an interpretation of these Hopf algebras as graded bialgebra deformations of Radford biproducts.
منابع مشابه
Pointed and Copointed Hopf Algebras as Cocycle Deformations
We show that all finite dimensional pointed Hopf algebras with the same diagram in the classification scheme of Andruskiewitsch and Schneider are cocycle deformations of each other. This is done by giving first a suitable characterization of such Hopf algebras, which allows for the application of a result of Masuoka about Morita-Takeuchi equivalence and of Schauenburg about Hopf Galois extensio...
متن کاملAdditive Deformations of Hopf Algebras
Additive deformations of bialgebras in the sense of Wirth are deformations of the multiplication map of the bialgebra fulfilling a compatibility condition with the coalgebra structure and a continuity condition. Two problems concerning additive deformations are considered. With a deformation theory a cohomology theory should be developed. Here a variant of the Hochschild cohomology is used. The...
متن کاملBivariant Hopf Cyclic Cohomology
For module algebras and module coalgebras over an arbitrary bialgebra, we define two types of bivariant cyclic cohomology groups called bivariant Hopf cyclic cohomology and bivariant equivariant cyclic cohomology. These groups are defined through an extension of Connes’ cyclic category Λ. We show that, in the case of module coalgebras, bivariant Hopf cyclic cohomology specializes to Hopf cyclic...
متن کاملLie bialgebra contractions and quantum deformations of quasi-orthogonal algebras
Lie bialgebra contractions are introduced and classified. A non-degenerate coboundary bialgebra structure is implemented into all pseudo-orthogonal algebras so(p, q) starting from the one corresponding to so(N +1). It allows to introduce a set of Lie bialgebra contractions which leads to Lie bialgebras of quasi-orthogonal algebras. This construction is explicitly given for the cases N = 2, 3, 4...
متن کاملCohomology of Finite Dimensional Pointed Hopf Algebras
We prove finite generation of the cohomology ring of any finite dimensional pointed Hopf algebra, having abelian group of grouplike elements, under some mild restrictions on the group order. The proof uses the recent classification by Andruskiewitsch and Schneider of such Hopf algebras. Examples include all of Lusztig’s small quantum groups, whose cohomology was first computed explicitly by Gin...
متن کامل